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A model for the lateral diffusion of "stiff" chains in a lipid bilayer 
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Abstract. We present random walk models for the 
diffusive motion of lipid probe molecules in a lipid 
bilayer and calculate the diffusion constants for pro- 
bes spanning the entire bilayer and for probes extend- 
ing through one lipid layer only. The "stiffness" of 
such molecules can explain the observed value of 2/3 
for the ratio of these diffusion constants. 
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Introduction 

Recently, Vaz et al. have observed the translational 
diffusion of lipid probes in the liquid crystalline phase 
of lipid bilayers (Vaz et al. 1985). The lipid probes 
investigated were chosen either to extend only 
through one layer or to span both layers of the host 
membrane. The measurements revealed diffusion 
coefficients, D1, for single layer penetrating probes 
which were independent of the actual chain length of 
the probe molecule (Vaz et al. 1985). However, for 
probes endowed with polar head groups at both ends 
of the chain, which span both layers of the membrane, 
an unexpectedly large diffusion coefficient, D2, was 
observed, equal to about 2/3 of the monolayer probe 
diffusion coefficient Da, independent of temperature 
(Vaz et al. 1985). In this paper we will present a simple 
model which relates the D2/D~ ratio to the mechanisms 
of microscopic diffusive displacements and to the 
structure of the lipid probe. Our model yields the 
observed D2/D1 ratio for a plausible choice of molecu- 
lar properties. 

Diffusion in lipid bilayers is 2-dimensional. We 
will consider here neither those features of diffusion in 
membranes which are due to the hydrodynamic diffi- 
culty of defining stationary, strictly 2-dimensional 
diffusion nor will we be concerned with the effects of 
the viscosity of the surrounding 3-dimensional 

medium (for a recent review see: Clegg and Vaz 
1984). We assume that these aspects of membrane 
diffusion do not contribute significantly to the DJD1 
ratio. Rather, we imagine that the D2/DI ratio is 
mainly influenced by the "stiffness" of those probe 
molecules which extend through both layers of the 
lipid membrane since their stiffness may lead to 
certain couplings between the microscopic diffusive 
displacements in the two liquid crystalline layers. 
Hence, a comparison between the results of model 
calculations on probe molecule diffusion in lipid 
monolayers and bilayers with the observed D2/D~ ratio 
may provide information on the microscopic events 
within the host lipid matrix which are connected with 
the translational mobility. 

In our model the lipid membrane is represented by 
two parallel, planar, discrete lattices which have been 
chosen to be hexagonal because of the hexagonal 
structure of the liquid crystalline phase. The lattice 
spacing, a, may be taken to be the diameter of the host 
lipids. The diffusion of the probe molecule is restric- 
ted to the lattice points. Hence, the monolayer diffu- 
sion of the lipid probes is described as a simple random 
walk on one lattice only, whereas the translational 
motion of the probes spanning both layers is modelled 
as a coupled random walk on the two parallel lattices. 
The latter model bears some resemblance to multi- 
state random walk models which have been used, for 
instance, to describe the motion of atomic clusters on 
surfaces (see Weiss 1983 and references therein). 
However, whereas these models were formulated as 
continous time random walks, we describe the diffu- 
sive process in a simpler way by a master equation (see 
e.g. Haken 1977, chap. 4). This description corres- 
ponds to a continous time random walk with a single 
exponential waiting time distribution (see Weiss 1983, 
chap. II.A.3). 

Before presenting the 2-dimensional model and its 
solution in Sect. 3 we will first investigate, in Sect. 2, 
the monolayer and bilayer diffusion processes in one 
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Fig. 1. Free diffusion in a 1-dimensional monolayer ;  q is the 
probability that  the probe molecule at lattice site x jumps  to x - 1 or  
to x + I within the t ime r 

average time r, for the appearance of a random free 
volume at a neighbouring site, then we can describe 
the probe diffusion by a master equation. Denoting 
the probability of finding the probe at time t, at the 
position ~ = ax, by p (x, t) this rate equation assumes, 
for the process depicted in Fig. 1, the form 

dimension, since the 1-dimensional problem furnishes 
a simple introduction to the theory and its assump- 
tions. Section 4 discusses the results and the microsco- 
pic mechanisms which have to be invoked by our 
model to account for the observed D2/D1 ratio. 

Diffusion models  in one dimension 

Monolayer diffusion 

To introduce our treatment of lipid probe diffusion in 
a lipid membrane we first describe the case of 1- 
dimensional monolayer diffusion. In this case the 
diffusion is modelled as a random walk on a lattice 
with positions ~ = ax, x = O, +1, +2, . . .  (see Fig. 1). 
Our picture of the physical events which cause micro- 
scopic diffusive displacements is that these displace- 
ments are preceded by the appearance of a free 
volume proximate to the probe. Let r be the average 
time within which such a free volume, generated by 
random density fluctuations in the host lipid matrix, 
appears at a lattice site in the neighbourhood of the 
probe. The probability that the free volume appears at 
a particular site in the immediate neighbourhood of 
the probe is then 1/z, where z is the number of nearest 
neighbour lattice points. 1 In the 1-dimensional case 
considered here the coordination number z is 2, of 
course. The free volume may then be occupied either 
by the probe or by one of the host lipids next to the 
free volume. If the probability of either event is the 
same, i.e. again 1/z, one obtains for the total probabi- 
lity, q, that the probe is displaced within the time, r, to 
a particular neighbouring lattice point 

1 
q = z2 (1) 

and the rate constant for a diffuse displacement to a 
neighbouring lattice site is q/r. If we exclude memory 
effects, i.e. if we assume that the free volume left 

:behind the displaced probe molecule at its original 
position is immediately filled up by the host lipids and 
that the probe has to wait at its new position, again an 

8 

8t 
- - p ( x , t )  = q[p(x - 1,t) - 2p(x,t) + p (x  + 1,t)]. 

(2) 

The diffusion constant is measured by the long time 
behaviour of the mean square displacement of a probe 
starting at ~ = 0 and, according to continuum diffusion 
theory in d dimensions, is defined as 

1 d 
D = - -  lim (~2(t)).  (3) 

2d t-,® dt 

Although the evaluation of D from Eq. (2) is trivial we 
include it as an illustration of the mathematical me- 
thod: 

d 
dt (~e2(t))= ~ a2x2 8 

- -  x 8t p(x,  t) 

a2 q 
- - -  ~ x 2 Lo ( x -  1, t) - 2p (x, t) 

X 

+ p(x + a,t)] 

aZq ~ [ ( x + l )  2 - 2 x  2 
F X 

+ (x - 1) 2] p (x, t) 

= 2  azq ~ p (x , t )  . (4) 
r x 

Since the conservation of probability holds, i.e. 

]~ p (x, t) = 1 ,  (5) 
X 

Equation (4) identifies the single layer diffusion con- 
stant to be (z = 2, d = 1): 

z a2q 
D1 - - -  (6) 

2d r 

Bilayer diffusion 

1 In general  r may  depend  on z. However ,  such a dependence  is 
immater ia l  since we will consider only the  ratio of  diffusion 
coefficients D2/DI,  which is independent  of  r 

For the description of the diffusive motion of a probe 
molecule which has two polar head groups, one at 
each end of the hydrocarbon chain, and extends across 
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Fig. 2. Coupled diffusion in a 1-dimensional bilayer; a the three configurations - ,  0, and + of a 
stiff, bilayer spanning probe molecule on the two parallel lattices modelling the lipid bilayer; 
h possible hopping processes within the time r for an untilted and c a tilted molecule 

both layers of the membrane, we call one of these 
groups the "head" and the other the "tail" of the probe 
and the corresponding layers of the membrane the 
"upper layer" and the "lower layer". To simulate a 
certain degree of "'stiffness" in the probe we assume 
that it can only exist in three possible configurations: 
the tail may be either directly below the head or in two 
tilted positions, i.e. either one lattice spacing to the 
left or one to the right (cf. Fig. 2a). We denote these 
configurations with the indices 0, - and +. Head and 
tail displacements of the probe are assumed to be 
statistically independent processes and are assumed to 
be produced by the same stochastic free volume 
mechanism as in the case of single layer diffusion. 
Thus, on the average, one free volume appears within 
the time, r, in each layer proximate to the head and to 
the tail. Statistical independence of the density fluc- 
tuations in the two layers requires that head - head, 
tail - head, head - tail and tail - tail consecutive 
displacements within r are equally probable. Then the 
probability is 1/z that a free volume appearing in the 
upper (lower) layer is created at a particular lattice site 
proximate to the head (tail). The probability that the 
head (tail) of a probe molecule in the upright configu- 
ration, 0, hops into this free volume is taken to be 1/z, 
which amounts to the assumption that the free volume 
becomes occupied with equal probabilities either by 
the head (tail) of the probe or by one of the surround- 
ing host lipids. Hence the rate at which a probe in the 
upright configuration, 0, jumps into a tilted configura- 
tion by head or tail displacement is q/r, where q is the 
single layer hopping probability given by Eq. (1) (see 
Fig. 2b). For tilted probes, we also assume that free 
volumes arrive at either side of the probes head and 
tail at the rate 1/r. Denoting by c,o/r the rate of 
displacement which untilts the probe (see Fig. 2c) and 
by a the probability that a tilted probe uses a particular 
neighbouring free volume for untilting we have: 

a 
cp = - - .  (7a) 

z 

In this definition of the untilting probability, co, we 
have assumed that the processes of free volume 
generation at a particular site and of untilting the 
probe are statistically independent such that q~ is the 
product of the corresponding probabilities 1/z and a. 2 
The untilting rate q)/r is assumed to be larger than the 
tilting rate q/r, i.e. 

1 
a _> - - .  (7b) 

z 

The parameter a describes a tendency of the probe to 
regain its untilted form by winning the competition for 
the appropriate free volume against the host lipids. 
Consequently, a can be considered as a measure of a 
force restoring the upright configuration. If one deno- 
tes the probability of finding the head of the probe in 
configuration i at time t at position ~ = ax by p, (x, t), 
where i characterizes the configurations 0, + or - ,  
one can derive the master equations for coupled 
bilayer diffusion: 

8 

8t 
- - p o ( x )  = - 4 q p o ( x )  + ~[p+(x)  + p+(x  - 1) 

+ p_ (x) + p_ (x + 1)] 

8 

8t 
p+(x) = -2cpp+ (x) + q[Po(X) +po(x + 1)],  

(8) 

2 If this condition of statistical independence is not fulfilled then 
Eq.  (7a) represents only a formal separation of a factor ]/z from 
the untilting rate q)/r and a cannot be considered a probability 
anymore 
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where we have dropped the explicit time dependence 
of the probability distributions for notational conve- 
nience. Owing to the equivalence of the two layers, 
one obtains for a molecule starting at ~ = 0 in 
configuration 0 the symmetry relation 

p_ (x + 1) = p+ (x). (9) 

Using Eqs. (8) and (9) we can calculate the time 
derivative of the mean square displacement 

d (~=(t)) = ~ aex 2 8 [p_(x) +po(x)  +p+(x)]  
dt x at (10) 

of the heads quite analogously to the calculation in 
Eq. (4) and find: 

d (~2 ( t ) )  = 2 - -  aeq ~ po(x) . (11) 
dt r x 

Denoting bypi the probability that the probe at time t 
is in configuration i 

Pi = ~ p i ( x )  , i =  - ,  O, + (12) 
x 

we obtain from Eq. (8), by summation over all pointsx 
of the lattice, a relaxation equation for these probabi- 
lities: 

O 

Ot 
Po = -4qpo + 2q~ (t9+ + p_) 

0 
r p+_ = -2gop+_ + 2qpo. (13) 

Ot 

A simple analysis of Eq. (13) shows that the probabili- 
ties, p,, relax on a time scale of the order of r to the 
equilibrium values. Denoting these stationary solu- 
tions of Eq. (13) by 15i and using Eq. (9) gives for the 
long time behaviour of Eq. (11): 

d 
lim (~2(t)} = 2Dlpo. (14) 
t--,= dt 

Evaluation of p0 from Eq. (13) finally yields the ratio 
of the diffusion constants in terms of the rates 

/-)lD2 _ (  2q )  -1 
= 1 + (15a) 

q~ 

or with Eqs. (1) and (7) in terms of the coordination 
number z = 2 and of the parameter a measuring the 
restoring force: 
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Fig. 3. Results of 1-dimensional model calculations on the ratio 
DJD1 as a function of the variable, a, which measures the force 
restoring the untilted configuration; the curves are labeled by the 
stiffness parameter, M, which determines the number 2M + 1 of 
allowed configurations (for discussion, see text) 

Figure 3 shows a plot of Eq. (15b) (this is the curve 
labelled by the parameter M = 1; see below). The 
curve demonstrates the main aspects of our model: A 
lipid probe extending across the whole bilayer has a 
reduced diffusion constant. The reduction depends on 
the force, a, restoring the untilted configuration. The 
reduction decreases as a increases and reaches the 
observed value of 2/3 for a = 2. In terms of our 
original interpretation of a as a probability, a value of 
a > 1 seems to be unreasonable. However, if the 
assumption that the generation of free volumes and 
the untilting of the probe are statistically independent 
processes is dropped, a can assume values larger than 
1 (see above). For instance, the value a = 2 implies 
that a tilted probe is certain to use all free volumes 
appearing in its neighbourhood for regaining its 
upright configuration even if the free volume appears 
at the wrong proximate lattice site. Thus, the result 
suggests that a tilted probe molecule, in order to untilt 
itself, generates a free volume at the proper place by 
pushing neighbouring host molecules away. For such a 
process the existence of a second dimension is a 
prerequisite and so we cannot account for it properly 
in this simple 1-dimensional model. 

There are, however, a couple of further conclu- 
sions which can be drawn from considerations in one 
dimension. The three configuration model for a stiff 
probe discussed above allows a straightforward gene- 
ralization to an 2M + 1 configuration model for a 
rather flexible probe molecule. Here the configura- 
tions i (i = 0, ___1, . . . ,  +M) are characterized by a shift 
of the tail compared with the head by i lattice sites. 
Assuming the hopping rates for head and to be q/r in 
all configurations Ji[ --- M - 1 and to be q)/r for the 
transitions M---~ M - 1 and -M---~ - M  + 1 one finds 
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D: M 

1 
D1 2 M -  1 + - -  

(2 

(16) 

which tends to 1/2 for large M, independently of a. 
Only for very stiff probe molecules (M = 1) is the 
observed experimental ratio, D2/D1 = 2/3, reached at 
finite values of a (see Fig. 3). Therefore,  for very 
flexible lipid probes extending through both layers the 
predicted diffusion is much slower than that observed. 

Diffusion in 2-dimensional bilayers 

For the description of the 2-dimensional diffusion of a 
lipid probe in a lipid membrane we have chosen a 
hexagonal lattice as shown in Fig. 4a. As in the 1- 
dimensional case the displacement of a probe mole- 
cule moving in only one of the two layers is considered 
to be affected by the random appearance of a free 
volume in the matrix of the host lipids within an 
average time r at one of the z = 6 neighbouring lattice 
sites. The calculation of the diffusion constant, D1, 
follows exactly the same lines as the treatment pre- 
sented in Eqs. (1)- (6)  of the 1-dimensional case and 
yields the same result. Thus, D1, is given by Eq. (6) 
with z = 6 and d = 2; furthermore a is the lattice 
constant of the hexagonal lattice and q/r the rate at 
which the probe is displaced to a neighbouring lattice 
site. 

..__.¢__. 
a 

A stiff probe molecule spanning both layers of the 
host membrane is considered to exhibit seven possible 
configurations in the two parallel lattices representing 
the lipid bilayer: an untilted configuration denoted by 
0 and six tilted configurations in which the tail is 
shifted by one lattice spacing in the directions +~, +t/, 
+~t/, as shown in Fig. 4b. The corresponding configu- 
rations will be labeled by the indices i: 

i ~ I0 = {0, +x, +y, +xy} .  (17) 

The rates q/r and q)/r for the tilting and untilting 
processes, respectively, are chosen as in the 1-dimen- 
sional problem (compare Figs. 2b and 2c). As an 
additional process we assume that a tilted molecule 
can rotate at a rate (fir around its head if a free volume 
is generated at an appropriate position next to the tail 
and vice versa (see Fig. 4c). Denoting the probability 
of finding the head of a probe molecule in configura- 
tion i at position (~, ~/) = (ax, ay), x, y = O, +1, 
+2, . . . ,  at time t by pi(x, y) the master equation for 
bilayer diffusion assumes the form: 

c3 

c3t 
P0 (x, y) = - 12qp0 (x, y) + q) [Px (x, y) 

+ px(X - 1,y)  + p-x(X, y) 
+ P-x (x + 1, y) + py (X, y) 
+ py (x, y - 1) + p_y (x, y) 
-I- p_y (x, y + 1) + Pxy (x, y) 
+ Pxy (x - 1, y - 1) + P-xy (x, y) 
+ P-xy (x + 1, y + 1)] 

/~lq 0 heads 
• ~xxy • tails 

_x® [] -'=- 

b 

\ 
" ,  

g 

Fig. 4. Diffusion an a 2-dimensional hexagonal lattice; a free diffusion in a mono- 
layer: b allowed configurations of a stiff, bilayer spanning molecule viewed from the 
top; as in Fig. 2 an open circle denotes the head of the probe in the upper layer and a 
full square the tail in the lower layer; c possible rotational hopping processes for a 
tilted molecule; tail rotation occurs in the lower, head rotation in the upper layer 
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a 
r I p ± x ( X ,  y) = 

Ot 

a 
p+_y(X, y) = 

Ot 

P+-xy( x, Y) = 
at 

-2CpPex(X, y) + q[Po(X, y) 
+ po(x -+ 1, y)]  - 4(lp+~(x, y) 
+ (l [pzy (x, y) + p=_y (x +- 1, y +- 1) 
+ P+_xy (X, y) + P+_xy (X, y -T- 1)1 

-2~op+y(x, y) + q[Po(X, y) 
+ Po (x, y +_ 1)] - 4(lP±y (x, y) 
+ q[p~x(x, y) +P-vx(X +- 1, y +_ 1) 
+ p+~y(x, y) + P+xy(X T- 1, y)] 

--2cpp+xy(X, y) + q[Po(X, y) 
+ P0 (x + 1, y + 1)] -- 4glP+xy (x, y) 
+ O[p+x(X, y) + p--~(x, y + 1) 
+ p+y (x, y) + p+y (x + 1, y)] (18) 

a 
at P+_xy = -(2c; + 4c~)p+xy + 2qpo + 2gl(P+x +p+y) 

(23) 

Denoting the stationary solutions of Eq. (23) by/~i, the 
long time behaviour of Eq. (21) results in: 

lim  ,--,~ dt (rZ(t)) =2dDx o+ (1 p, . 
z q  . 

(24) 

Evaluation of the equilibrium probabilities p~ from 
Eq. (23) and use of Eq. (3) yields the final result: 

D2 1 + (q@) 

Da 1 + (zq/q)) 
(25) 

Since the upper and the lower layer are equivalent, 
analogously to Eq. (9) for a probe molecule starting at 
r = (~, t/) = (0, 0) in the upright configuration, the 
following symmetry relations hold: 

p-x(x + 1, y) = p~(x, y) 
p_y (x, y + 1) = py (X, y) 

p-xy(x + 1,y + 1) = Pxy(X, y) .  (19) 

Using Eq. (19), the time derivative of the mean square 
displacement 

a x (r2(t)) = a 2 ~ (x 2 + y2 _ xy) ~ - ~ - p , ( ,  y) 
dt x,y ,d0 (20) 

can be evaluated in a straightforward calculation. One 
obtains: 

d--~ zq Pi , (21) 

Where I is the set (Eq. (17)) of configurations exclud- 
ing the upright configuration 0 andpi is the probability 
that the probe is in configuration i at time t: 

Pi = ~ pi(x, y) , i e Io. (22) 
x ,y  

As in the 1-dimensional case a relaxation equation 
follows from Eqs. (18) and (22) for the Pi: 

a 
P 0 = - 1 2 q P 0 + 2 ~  ~ Pi 

Ot i~1 

8 

Ot 
P+x = -(2q~ + 4O)p+x + 2qpo + 2gl(P-~y +p+~y) 

a 
c~t p+-y = -(2eft + 4gl)P+y + 2qpo + 2gl(Pr-x + P+xy) 

We would like to note that a treatment of our model 
on a square lattice (z = 4) yields the identical result. In 
addition, a comparison with Eq. (15a) reveals that 
Eq. (25) reduces to the one dimensional result (z = 2) 
if the rotation rate (fir is set to zero. Consequently, it is 
seen that the additional degree of freedom created by 
rotations of tilted probes speeds up the diffusive 
motion. 

Discussion 

If one assumes for the rotation rate, El~r, of the tilted 
lipid probes extending through the whole membrane 
the same microscopic free diffusion mechanism as for 
the tilting displacements (q = q) then using Eqs. (1) 
and (7) the ratio DjD1 given in Eq. (25) can be 
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Fig. 5. The  ratio D2/DI for 2-dimensional  diffusion on a square 
(z = 4) and on a hexagonal  (z = 6) lattice as a function of the 
restoring force parameter ,  a;  also indicated are the values of  a at 
which there is no restoring force (a = 1/z) and at which D2/D1 
reaches the exper imental  value [a = 1 + (z - 3)/z] (for discussion, 
see text) 
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Fig. 6. Creation of free volumes (denoted by open squares) for untilting in the upper layer of a a hexagonal and b a square lattice; it ]s assumed 
that the head can force a host lipid molecule to jump with the monolayer diffusive hopping rate q/r (q = z -2) into one of the free volumes 
appearing at the z - 3 next nearest neighbour positions (indicated by full circles) and can use the created free volume to untilt immediately; 
the nearest neighbour positions accesible for head rotations (denoted by the crosses) have been excluded from this process for consistency 

rewritten in terms of the coordination number, z, and 
the untilting parameter, a, as 

Z - - 3  
a = 1 + - - ,  (29) 

D 2 1 + (1/za) 

D1 1 + (l/a) 
(26) 

Figure 5 shows the graphs of the D2/D1 ratio for the 
square and the hexagonal lattice as a function of the 
variable a. In terms of microscopic events, a has been 
defined as the probability that a tilted probe uses a 
particular free volume to regain its upright configura- 
tion if such a vacancy has appeared at the proper 
position. According to this interpretation the value of 
a is 1/z if there is no preference for the untilting 
process as compared to the process of tilting. The 
r e s p e c t i v e  D2/D 1 ratios 

D2 = [ 2 / 5  = 0 . 4 0 ,  z = 4 ( 2 7 )  
Dt [2/7 0.29, z = 6 

then one obtains, for both lattice, the experimental 
value 

D2 2 

D1 3 
, z = 4 ,  6 .  ( 3 0 )  

In view of the result of the 1-dimensional 2M + I state 
model for very flexible probes stating that the D2/D1 
ratio decreases with increasing flexibility one may 
summarize now that the large observed D2/D 1 ratio 
should be due to a force which restores "stiff" probe 
molecules to their upright configuration. 
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are much smaller than the observed value of 2/3, 
indicating that there must be a preference for the 
untilting process. The value of a is 1 if a tilted 
molecule is certain to win the competition for the free 
volume against the surrounding molecules of the host 
lipid matrix. However, the corresponding ratios 

D2 _ / 5 / 8  ~ 0 . 6 3 ,  z = 4  (28) 
D1 [7/12 0.58, z = 6 

are still slightly too small to explain the experimental 
result. To obtain larger D2/Dt ratios one must assume, 
in addition, that a tilted molecule, by exerting a force 
on the host lipid molecules, can create a free volume at 
the proper place. If, for instance, random free volu- 
mes appearing within r at the z - 3 positions, which 
are indicated in Fig. 6 and are not accessible by 
rotations of the probe, are used by host molecules with 
the free hopping probability 1/z to give room for the 
untilting of the probe, i.e. 
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